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Second-Order Green's Function Theory
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The Heisenberg paramagnet in one, two, and three dimensions is analyzed
by a second-order Green’s function theory similar to that used by Knapp
and ter Haar. This theory, which incorporates the exact values for the zero,
first, and second moments of the relaxation function as boundary conditions,
yields results satisfying the rotational symmetry of the paramagnetic region
as well as the principle of detailed balance. We find that our predictions for
equal time propertics in the classical limit are identical with the RPA Green's
function theory of Liu as wecll as the spherical model results of L.ax. The
quantum linnt is analyzed, and our predictions for the 1:7 serics coeflicients
for both intcrnal energy and susceptibility arc compared with exact results.

KEY WORDS: Heisenberg paramagnet; Green’s functions; relaxation
functions.

i. INTRODUCTION

The Heisenberg model has been extensively studied during the last several
years using the techniques of double time temperature-dependent Green’s
functions. Formally, the problem of finding the solution for magnetization
and time-dependent spin-spin correlation functions is reduced to the deter-
mination of the solution to an infinite set of coupled first-order differential
equations. The development of a tractable formalism necessitates a decoupling
approximation.
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A majority of the decoupling procedures which have been utilized on
the Heisenberg model have been made at the first stage of the calculation,
since further delay introduces an enormous mathematical complexity to the
problem. The random phase approximation (RPA) of Bogoliubov and
Tyablikov1-% has been used extensively in many slightly modified forms.
A short and somewhat representative sample of these thcories is given by
Refs. 1-15.

These first-order theories arc largely designed to apply to systems in the
ordered state, and therefore the failure of the cxcitation energies to agree
with experiment and the exactly known propertics of the Heisenberg model
in the paramagnetic region is perhaps understandable. One finds that all
these theories, with the notable exception of Lines's,"™ produce excitation
energies for which the scaling with temperature is independent of wave
vector. A further examination of these theories shows that all spin wave
encrgies are vanishingly small in the paramagnetic region. Both neutron
diffraction™-19 and Raman®®2" experiments on magnetic systems reveal
that short-wavelength excitations remain finite and continue to propagate
well into the paramagnetic region. This phenomenon is most apparent in
one- and two-dimensional systems.'** *" Of the literature cited,"'" only
Lines' has a first-order Green's {unction theory for the paramagnetic
region that is even qualitatively correct and his approach, which is pheno-
menological in nature, leaves obscurcd the underlying basis for the theory.

In Section 2, we define both the Green's functions and the corresponding
relaxation functions which are pertinent to the Heisenberg model, as well
as quote some of the spectral relations thai are developed in the litera-
ture.?2% By using arguments based on the invariance properties of the
Heisenberg paramagnet as well as exact moments of the relaxation function,
we conclude that a second-order Green’s function theory is the best approach
because the second-order theory incorporates cxactly the zero. first, and
sccond moments of the relaxation function as boundary conditions for the
Green’s function equation ensuring nonvanishing excitation energies in the
paramagnetic region.

In Section 3; we describe a decoupling of the Green's function equations
which 1s a modification of the procedure used by Knapp and ter Haar'?®
and is similar to theories used by Richards.™ |Lo and Halley,® and
ourselves. 27

In Section 4, we make a further approximation to the Green’s function
equations obtained from the truncation used in Section 3. We tentatively
identify this approximation as the classical limit while deferring the proof
to Section 6. The equal time properties predicted by our theory in the
absence of a magnetic field in the classical limit are shown to be identical
with the predictions of the RPA theory of Liu."» It is also found that our
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thermodynamics reduces to the spherical model results in the classical
limit, as did the theory reported by Lo and Haliey. ™

In Section 5, we examine quantum effects that were neglected in the
classical limit approximation of Section 4. In particular we derive corrections
to the Curie and Néel temperatures predicted by the RPA and spherical
modecls by our theory to order 1/S(S - 1). The critical value of the nearest-
neighbor spin-spin correlation function is also calculated to the same level
of approximation. Comparisons of our resuits with (1/7) serics results are
given in Tables 1 and 11,

Finally, in Section 6, we examinc the 1/7 series expansion for the
susceptibility and nearest-neighbor correlation function predicted by our
theory, and as a by-product obtain the 1/7 series expansions for the spherical
model, the RPA theory, and the RPA thcory of Liu. Our theory is found to
give a much more accurate description of the high-temperature thermo-
dynamics than either the spherical model or the RPA theory of Liu especiaily
for small spin values, as may be seen by an cxanunation of the /7 serics
coefficients given in Appendices A and B.

2. GREEN’S FUNCTION THEORY

The usual retarded and advanced Green's functions reviewed by
Zubarev® are defined by

G;(f) = (A(t); B(0)>>; s S0 [A), BO)D hH
where .
gy=1, t>0; Hr =0 r<0 )
{4, B] = AB BA (3)
A(r) = et 4(0) =+t (4)
Lo, = Z-V Tr(eBH ) (5)
B = 1/kyT (6)

and H is the Hamiltonian defined by

H=-JYS,-S, ., (7)
S

where J 1s the exchange constant in units of energy (we usc units where
Planck’s constant is equal to 2#) and where the sum over the spin index
ranges over the positions of all N lattice sites, while the sum over d ranges
over the set of ncarest-ticighbor vectors only.
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Upon taking the time derivative of (1) and utilizing (3) and (4) in the
resulting cquation, one finds that both advanced and retarded Green's
functions satisfy

i(0/6)CA(t); B0y, — <[A. BY-o(r) . <[4, H]1); BOY:, (8)

«

We have used the convention that all operators to the left of the semicolon
in the Green's function appearing on the right-hand side of (8) are to be
evaluated at the time /. We define the image . I(w) of an arbitrary function of
the time A(r) under the Fourier transform operator £F(w; t) via

A(w) = Flw; 1) A1) = (1127) | dr et A(r) ¥)
It is convenient to define a relaxation function R(w) by
R(w) = iw  [Flw 1 ie; )G 1y Flew - ie )G (1)) (10)
The correlation function <B(0)A(r)., which 1s of ultimate interest, is given
by the spectral relation‘®
C(BOAR) = F (1 w)e R — 1) (1)

where F-1(z; w) is the inverse Fourier transform operator.
The relevant Green’s functions for the Heisenberg model are given by

Gunlly 1) = <87(1): $,"(0) (12

where m and # arc labels which may take on any of the values +, —, x, ¥,
or z. To each Green’s function detined by (12) there corresponds a Green's
function defined by

Gmn(ke ’)‘ FA;;Gum(j\ ’) (l 3)
where the Fourier lattice transform opcrator /., is defined by

Fojyo 2 PV (14)

To each Green’s function defined by (12) and (13) there corresponds a
relaxation function defined by (10). The moments of the relaxation functions,
which we denote by <w,",., , are defincd by

(W Dmn = f”’ w'R,, k. w) (/(U/ ‘V l Rmn(kv w) do (15)
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These moments are related in an important way to the boundary conditions
on the Green’s functions at time ¢ = 0. We find

(o DR(==0) = (i &00)" R(1),_, = it ¢jery LG A1), oo (16)

where R(¢) is the inverse Fourier transform of R(w) defined by (10).

We are now in a position to determine what is wrong with the use of a
first-order Green’s function truncation in the paramagnetic region. We have
that G__{k, t = 07) = —2i{Sy*). Therefore it tollows from (16) that

(el = USERL kot 0) = S (17)

where we have used the fact that JR. (A, 1 0) .= R (k,1==0).x,in the
paramagnetic region due to the spherical symmetry.?® The function y, is
just the wavelength-dependent paramagnetic susceptibility. If one insists
that the Green’s functions have only one pole corresponding to the magnon
energy, as is the case in the literature cited,”" 'V then the magnon energy
must be given by

1?/: = /\)wlr.\)l = '\/Sn; ';/Xi.- (]8)

as a resuit of (17). One must in fact solve the Green’s function equations
in the limit of vanishing magnetic field in order to get a solution since Sy
is identically zero when the magnetic ficld is identically zero.

It is clear, however, that the Green's function for G, _(k, t) must have
two poles in the paramagnetic region (to the cxtent ithat the concept of
elementary excitation is valid) since the operators F,.; S~ and F.,; S,” in
the absence of a magnetic field must by symmetry have equal probability
for creating and destroying a magnon. Therefore (17) should be interpreted
as a measure of the asymmetry in the location of the poles in the Green's
function corresponding to the propagation of a magnon and a magnon hole.

We now consider the information contained in the boundary condition
for the sccond moment of the relaxation function in the paramagnetic
region. We obtain

<w/:>:z = 05 <wk2>:: == 2‘/(')’() T )") S";rSd-.r T S()’ISII!/)/XK‘ (19)

from the relaxation function R, (k. ). The latice site d appearing in (19)
refers to any one of the nearest-neighbor sites of the site 0. The function v, is
defined by

Ye = 3 explik - d) (20)
£

where the sum over ¢’ ranges over the sct of ncarest-neighbor displacement
vectors. Notice that (19) is consistent with a relaxation function given by

R..(k, 1) = x. cOS(E,t) @1
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where
Ek2 = <wk2>zz == 2J(7’U - )’k) <Sn'r5uz o S(»"S,r"}'/iX/. (22)

Equation (21) is obtained by assuming that tor a given k, the relaxation
function contains a pure negative frequency corresponding to the presence
of a magnon of energy £, and a positive frequency component corresponding
to the presence of a magnon hole of encrgy - £, . The relative amplitude
and phase of the two frequency components are fixed by the principle of
detailed balance. More explicitly, Marshall and Lowde® have shown that
for crystals with inversion symmetry, R,.(k, t) must be an even function of ¢,
which they show is equivalent to the statement of detailed balance. Finally,
(19) determines the energy of the excitations to be given by (22).

It must be emphasized that (21) and (22) are meaningful only to the extent
that it is possible to describe the behavior of the Heisenberg paramagnet
in terms of clementary excitations. The experimental data®s- 2 suggest this
assumiption is realized most strongly in systems of low dimensionality,
In particular, the experimental measurement of the excitations of TMMC
(a once-dimensional Heisenberg paramagnet with § = 5/2 and J =. - 7.7°K)
have revealed the existence of elementary cxcitations obeying

E. = (6.1 meV)|sin b, (23)

over the entire Brillouin zone at 4.4 K.**" We have elsewhere®” shown in a
preliminary account of the present Green's function theory that our Green's
function theory is able to explain the excitation spectra given by (23) for
TMMC at 4.4°K.

In Section 3, we shall use a truncation procedure on the Green's function
cquations at second order. This truncation scheme is a modification of a
scheme used earlier by Knapp and ter Haar® and is similar to a scheme
also reported by Richards®®” and Lo and Halley."® We choose a second-
order decoupling scheme because the second moment sum rule for the
relaxation function given by (19) is incorporated into the Green's function
as a boundary condition. Furthermore, the symmetry of the sccond-order
cquation of motion for G,(j. t) guarantees that the condition of detailed
balance is satisfied, and this feature is easily retained in the truncation. In
fact, our theory has a relaxation function given by (21) and excitation
energies given by (22). These equations arc supplemented by (42)-(46),
which define a self-consistent scheme for determining the unknown sus-
ceptibility and nearest-neighbor corrclation function appearing in (21)
and (22).

Onc may justifiably ask why we should use a theory having a relaxation
function given by (21) in three dimensions at high temperature when both
experimental and theoretical studies indicate that the relaxation function
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should be Gaussian in w for large values oi’ k and Lorentzian in w for small
k."2 The answer is that the dynamics predicted by (21) is certainly un-
realistic; however, the static propertics are dctermined by only low-order
moments {w,*> of the relaxation function and these are correctly represented

in our theory. For example, we find from (11) that
Fisi80"8 B = xill < ¢ ey o+ ooty 1 o) (24)

Similar remarks hold for the Heisenberg paramagnet at high temperatures
in the cases of one and two dimensions.

3. DECOUPLING OF THE EQUATIONS OF MOTION

The Green's function G,.(J, ¢) 1s found to satisfy a second-order equation,
(i eJaty Go(j, 1)
o ZJZ {Se%Sa® -+ So"Sa¥ X850 = 3;.u.0) 81)
d

T 4-]2 Z <<(Sa * SH dez+d-. @ Sj * S, i do-d'sz+d)(’); Snz(o)}

a,a’

o 4J* z ((Sj-!—d * SJ’+d'SJZ - Si:! qu * Sj .wI')(’)l So:(o),\> (25)
d.a’
after using (8) two times and simplifying the resulting equation with the aid
of the spin angular momentum commutation relations. The operation
S,, * S;, appearing in (25) is presently to bc interpreted as the usual dot
product of two vectors. Knapp and ter Haar'*! procceded to approximate
the Green’s functions on the right-hand side of (25) by

&Sy, % 8,83(1); Sy'(0)) ~ (S, %S, G.ljs . 1) (26)

K838, % S;(1); S (0)p ~ 7S, xS, Go.l s, 1) (27)

Knapp and ter Haar described this truncation as a natural generalization
of the first-order RPA decoupling scheme. We refer the reader to their
paper for a discussion of the ambiguitics that arise in their truncation
procedure.

Our truncation differs from that of Knapp and ter Haar in that we
notice that the Green’s functions appearing on the right-hand side of (25)
which involve only z-component spin operators when summed yield
identically zero for all values of j and s. Therefore we interpret the operator
S, *8S,, as :

S; xS, = S;Sj, - S;.S5, (28)
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and (25) is still exact. We then truncate the Green's function equations
using (26) and (27).

We now examine the reason we think that (26) and (27) are appropriate
when the * product is defined by (28) and arc not appropriate when the «
product is interpreted as the ordinary dot product. FFor n = x or y (but
not z), we use

USESEST(); S (0)) =~ (SESE> Guiljg o 1)

s
o (STST Gule s ) 1 LSEST) Gaili o 1)

= \/S.::S/n_) (":2(4/'3 ? ’) (29)

The equality in (29) follows from the fact that both the correlation functions
(8783 and <8757 are rigorously zero for == x or y (but not z). This
may be seen most easily if the trace is taken in a basis in which the states
are cigenstates of the z-component of total spin. Similar arguments apply
to (27).

We will utilize the symmetrics of the isotropic Heisenberg model with
nearest-neighbor interactions, periodic boundary conditions, and equivalence
of nearest-neighbor sites to obtain a compact form for the truncated equations
of motion contained in (26) and (27). We have

(STESEY = (818 (8587 (ST S (30)
and
(Sa™Se™ = (SpSy™, d # d'; Y LSaaeSe = vo Y “SanaSe
d.d’ d
(31)

where j, and j, are arbitrary latticc vectors, d, d’. and ¢, are ncarest-neighbor
displacement vectors, and y, is the number of nearest-neighbor displacement
veetors.

It is important to retain the fact that (26).and (27) are only approximately
true in our truncation since there will be more cquations than there arc
unknowns, which can casily icad to a system of equations for which there
exists no solution. In anticipation of the problems that will arise, we treat
(26) and (27) as exact when | j; - j, - = | di This leads to

Z <<SJ'*SJ'-'-(I )?4(1+d'(r);Snz(O) 2/ Z G::(./ -d - dla t) (32)
d,ad of o’

and
S LS50S, # Sia(1); S (O)Y = 2y Y Go(j ot d1) (33)
d

d,d’
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where
I LSS (34)

However, when | j; — jo1 7 4, we do not demand a strict equality in
(26) and (27) unless j; = j, . We instcad make the approximation

Y LS5 % S SISO 28w Y. Gulj i dt) (35)
aut ]
and
Z {Sjpa® SyarSA(1), S(0) 28y,* G 1, 1) (36)
.’
where

= ')’51 Z <St)z‘stzl=lll/ (37)
o
and where ¢ is a constant tha: may deviate from unity. After combining
(32)-(37), we find
—(@Her?) G,y 1) = 4J8(1) 133, - 0.0
o

+8JEY Gulj /1)
4

X Z (f3 aow S8y €8, 0 — 2, .. (38)
d.d’

We sec that (38) 1s a difference equation which is easily solved by use of
the Fourier lattice transform defined by (14). We obtain

G:z(;)(k, t) == j':4p(_{’) Jf(')’() = ‘//,)[Sin(E,;’)]/Ek (39)

where
E2= 8-]2('}’0 — yilgy, - /’yk) (40)

The retaxation function is found to be
Rk, t) ~ flcostE.D]i2H gy, — fy.) (41)

upon substitution of (39) into (10). The wavelength-dependent susceptibility
xx 18 identified from (41) and (_2]) as

Xi = Ji2dgya - Svi) (42)

The susceptibility given by (42) is of the Ornstein-Zernike™! form. The
present theory will be complete once the temperature dependence of the
parameters fand g are determined.
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Upon the substitution of the Fourier transform of (41) into (11), we
obtain

(S5(0) S (1)) = Fri{ixicfcosh(ABE, + iE.0)]isinh(IBEL)! (43)

for the time-dependent spin-spin correlation {unctions. The paramecters
J and g are determined from (43} by the seli-consistency relations,

o SV, f)

S(S + 1)/3 = {(5,70) S,*(0)> = \ e 44
and
. Sz -~ In ik, T)
= gt S0} $,50), = - 45
/= §<°(} (), PNZN(W.;-- Fr) 7o (45)
where¢

Wk, T) = 4BE, coth({BE}) (46)

There 1s an additional self-consistency equation that determines the constant
¢ given in (37). It is

\z - Syt Vik,T)
g = S,%0) S5, (0)> L 47
8= L SO0 Sh 0 St e 9D

Our Green’s function theory is now complete. We shall find out how
well this theory, which is contained in (40)-(46), describes the behavior of
the Heiscnberg model. One can determine qualitatively the behavior of the
theory by examining the classical spin limit, which we now consider.

4. CLASSICAL LIMIT

We now proceed to recove. the classical Imit for the equal time properties
of the present theory and show that the thermal properties of our theory
are the same as those predicted by the RPA theory of Liu' as well as the
spherical approximation on tac Heisenberg model by Lax.'™ The description
of the equal time properties is contained in (40), (44)-(46), and the equation

«0 S0y — L5 flexp(--ik - )] Vik, T)
SO 700 ~ 2R % 2(gve — fra)

which we deduced by substituting (42) into (43) and using the inverse of the
Fourier lattice transform operator dcfined by (14). In Section 6, we will
prove that the classical limit corresponding to this system of equations is
given by (44) and (48) where one uses V(k, T) = 1 instead of the expression
given by (46).

(43)
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Our theory in the classical limit has only one unknown parameter,
h f]g. One can also use y, determined from (42) with &k == 0 as the
unknown parameter. The classical limit of (48) is then

) I« exp( ik - ))
S.%(0) S.*0 > oo AP S 1. TS S 49
< 0( ) ! ( ) ﬁN %Xul v 2‘](7’/0 - 7/.-) ( )

wherc the susceptibility y, is determin=d from

S(S -+ 1) 1 i

3 Bh, ; /\/(.l-l ' 2'1()/[) ’ //.) (50)
which is deduced from the classical linut of (44).

In the case of J = —! J |, it is morc reasonable to express (49) and (50)
in terms of the staggered susceptibility y. when it can be defined. More
precisely, when a lattice is decomposable into two interpenetrating sublattices
with the property that nearest reighbors of a point on one sublattice all lie
on the other sublattice, then one may define a staggered susceptibility. Then
there cxists at least one wave vector &, such that exp(ik, - j) = -1 for all
lattice sites j. The lattice points for which exp(iky-j) - | are on one
sublattice, while the points for which exp(ik, -j) = --1 arc on the other
sublattice. The staggered susceptibility is then determined from (42) by
Xs = Xk, - The important wave vectors when J = —;J' are those wave
vectors for which | kK — ky 1 is smail. We define a new wave vector ¢ by

g =k — ki (51)

so that (49) and (50) now become

. { expl -itky 1 g) - Jj]
Se3H(0) SH0)) =+ 5o ¥ it m (52
(So*(0) 5,700 B/\'Z,an'fz'l:(yo”yu) )
and
S 1« 1
3 RN KT 2Ty 9
respectively.

The equal time spin-spin corrclation functions which one obtains
from (49) and (50) are identical with those obtained by Liu'® when he
restored the spherical symmetry ¢o the RPA Green's function theory for the
quantum Heisenberg model in tne paramagnetic region. It remains an
unanswered question why the classical limit for the equal time spin-spin
correlations given by (49) and (50). which were calculated by a second-
order Green’s function theory with finite frequencies given by (22), are
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identical with the equal time spin -spin correlations obtained by Liu irom
the first-order RPA Green’s tunction approximition in which the excitation
cnergies become zero for all wave vectors in the limit of zero magnetie field
in accordance with (18). This identity strengthens the parallelism between
the present theory and the RPA thcory mentioned by Knapp and ter Haar %

About ten years ago, Tahir-Kheli and ter Haar'® pointed out that their
RPA Green’s function theory produced the same critical temperatures as
the spherical model of Lax.®® We now indicate that the equal time spin-spin
correlations predicted by the RPA Green's function of Liu are the same as
those predicted by the spherical model of Lax. This identity 1s most casily
obtained by a treatment of the Heisenberg model in the spherical approxima-
tion paralieling the development Icading to Eq. (36) in the paper by Berlin
and Kac® devoted to the spherical approximation to the Ising model.
The transition to the spherical approximation results for the Heisenberg
model from the spherical model results of Berlin and Kac requires only a
redefinition of the symbols since the new degrees of freedom S," and S;” are
not dynamically coupled to S,7 v the spherical approximation. It remains an
unanswered question why the equal time spin spin correlation functions
predicted by the present theory are equivalent to both the spherical model
of Lax and the RPA theory of L. This identity, however, gives us an
insight into the behavior of our model in one two, and three dimensions.

The classical limit of our theory as dehined by (49) and (50) predicts that
a transition from the paramagnetic state to a state of long-range order is
possible only in three dimenstons, ™™ in agreement with the proof of Mermin
and Wagner.® For J = 0, ones finds: & sccond-order phase transition from
the paramagnetic to the ferromagnctic state: spin spin correlation functions
of the Ornstein-Zernike® form in the critical region™V; susceptibility
obeying a (T — T.)? law in the critizal region™ instead of a (7 -- 7.)'3 Jaw
predicted by early 1/T series methods; ™ and the predicted specific heat
remains finite at 7, in disagreement with the 1/T series result.™ For
J <2 0, one must distinguish between two distinet cases. FFor those lattices for
which it is possible to define a staggered susceptibility, one finds a transition
from the paramagnetic state to the antiferromagnetic state only in the
three-dimensional case, in agreement with the theorem of Mermin and
Wagner.®® The critical properties arc analogous to those for the ferro-
magnetic transition, as is evidenced by the isomorphism that exists between
the set of equations (49) and (Z0) and the set of equations {52) and (53).
When J < 0 and y, is undcefined, one does not generally find a transition
even in three dimensions, as is evidenced by the face-centered cubic lattice
with only nearest-neighbor interactions.™™ In the case of both positive and
negative exchange constants J, one hinds that the classical limit is asymptoti-
cally exact at high temperatures.'®
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In the development that is to follow, we will need the RPA expressions
for the Curie and Néel temperatures first obtained for arbitrary spin by
Tahir-Kheli and ter Haar.'® The cxpression [or the Curie temperature in
the RPA. which we denote by T . is casily obtained from (50) by sciting
xe = oo. while the expression for the Nécl temperature in the RPA, which
we denote by T, is easily obtained from (53) by setting x, = oo. Both
results may be expressed as

oo 2SS D 1
Te = Ty = e /\?"57' ——) (54)

1t should be recalled that we introduced a parameter ¢ in (37) which may
differ from unity if necessary to ensure the existence of a solution for fand g.
Onc can show that in the classical limit, ¢ has the unique solution of unity
and hence (37) is redundant. The situation is quite different in the quantum
case, which we now consider.

5. QUANTUM RESULTS

We consider the thermodynamics predicted by our Green’s function
theory in the quantum case, which 1s defined as the solution to (40), (44) (46),
and (48). The solutions to these equations have the same qualitative features
as the solution in the classical iimit. In particular, one finds that y, and y,
are decreasing functions of temperature with y, = y, = 0 at infinite
temperature and with xo == o0 at the Curie temperature [which implics
that /' ¢ due to (42)] and with yx, v. at the Néel temperature [which
implies that /= —g due to (42)]. One now finds from (44) that in the quan-
tum limit, the Curie temperature, which we denote by 7. and the Néel
temperature, which we denote by 7y, arc given by

1

Te = [214°S(S + Df3ks] )N Y Pk TNy 9], (59)
~ A N

where one choses the minus sign for 7 and the plus sign for Ty . It no
longer follows that the Curie and Néel temperatures are equal. The reason
for this is that excitation cnergies appearing in the definition of V(k, T)
given by (46) are quite different. In fact, one has from (40) that

Eiiror = 41 (ve — vi)s Firg 40 [ 13pE - 32 (56)

Notice that at T, the excitations have the same wavelength dependence as
low-temperature ferromagnetic magnens, while ut 7y, the excitations have
the samec wavelength dependence as low-temperature antiferromagnetic
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spin waves. The facts that the staggered susceptibility becomes infinite and
the excitation energies have a higher periodicity in k-space consistent with
a sublatticc picture stongly suggest the appcarance of antiferromagnetism
at lower temperatures, although we arc unable to explicitly demonstrate
this since the assumption of a spherically symmetric phase is no longer
valid below Ty . Likewise, we can only suggest the existence of the ferro-
magnetic phase below T¢ .

Rushbrooke and Wood'®® have used a 1;7 series expansion lor the
susceptibility and staggered susceptibility to determune ecstimates for the
Curie and Néel temperatures. They find

(TRY — TENTEY ~ 0.638(S - 1) (57)

where 71" and T&W are their estimates for the Néel and Curie temperatures,
respectively. One should therefore expect a different expression for the
Curie and Néel temperatures, as is evidenced by (55).

It will now be shown that our Green's function theory in the quantum
limit is consistent with the tiheorem of Mermin and Wagner,™®¥ which states
that a phase transition to the ferromagnetic state or antiferromagnetic state
at finite temperature is impossible in either one or two dimensions. To do
this, we note that V(k, T)as defined in (46) satisfies the inequality V(k, T) = 1
for all values of k and T for both positive and negative exchange constant J.
This inequality, when used in (55), lcads to the results

Te = Te,  Tn- Ty (58)
which in view of the known values of Ty and T, implies consistency with
the theorem of Mermin and Wagner.

We now estimate the change in the thermal properties arising due to the
quantum effects which were neglected in the classical limit presented in
Section 4. The V(k, T) appearing in (46) may be expanded about 2 - 0.
If we substitute this expansion into (44} and (45), we obtain

25(S + DBJ = 3(h) - 238, ¢ (59)
and .
WS = Iyl — 1] = 2B, 13 - (60)
where I{}) is the lattice sum,
Ith) = (l/'N); {hity, - hyo)] (61)
and

h - [ig (62)



Second-Order Green's Function Theory of a Heisenberg Paramagnet 109

A comparison of (44) and (45) with (24) shows that we have retained terms
to order <{w,2),, in the expansion given in (59) and (60). It should be recalled
that the exact zero, first, and second moments of the relaxation function
R_.(k, 1) have been used as bour.dary conditions on our Green's function at
t = 0, asis reflected in (16) and (19). Highcr moments have not been included
in (59) and (60) since these are not correctly given by the relaxation function
as given in (21), which contains only two frequencics. The contributions
from these higher moments to the thermodynamics is small except possibly
for § = ! systems with a smali number of near neighbors for temperatures
near the critical temperature in the three-dimensional case. We may rearrange
(60) to obtain '

28Jyof = yd()ht — 110 = 380 (63)

Furthermore, we obtain
28(S 4 DBS == 3L — [2S(5 - DI [yl P — 111 = 1BJ) 1 (64)

upon the substitution of (63) into (59). In order to motivate one further
approximation, we write the term (I -:- }8J) which appears in both (63)
and (64) as

(1= §8T) = {1 + [Te()6S(s + DT}, (65)

with the aid of (54) and (61). Equation (653} indicates that (59) and (60),
when expressed as a series in T/ T, will also be a series in inverse powers of
S(S -+ 1). The same results apply to (63) and (64), which are derived from
(59) and (60). If we now compare (63 and (64) with the aid of (63), we see
that the denominator of (64) contains higher terms in inverse powers of
S(S -+ 1) than does (63). We therefore make the furher approximation of
replacing (64) by

2S(S + DBJ = W — [25(S ¢ D) [yd(Wh™ - 1) (66)

so that (60) reflects the same level of approximation as does (63) in inverse
powers of S(S - 1).

In the remainder of this paper. (63) and (60) will be used to describe
the high-temperature region of the Heisenberg paramagnet. The high-
temperature region is defined as the entire paramagnetic region for three-
dimensional paramagnets which undergo cither a Curie or a Néel transition.
For one- and two-dimensional paramagncts as well as those three-dimen-
sional paramagnets that do not undergo a Néel transition when J/ is negative,
we define the high-temperature region to be the temperature range above
the Curie-Weiss temperature defined by

Ocw = 214 9,8(S - 1)i3ky (67)
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A comparison with experiment would require use of analytical expressions
for the Watson sums [(/),13%38.39- 1) 14 obtain the self-consistency parameters
/and /4 appearing in (63) and (66). However, we are primarily interested in
making a comparison with exactly known properties of the Heisenberg
model to test the validity of the statistical approximations used in this
paper. The bultk of the theoretical knowiedge related to the Heisenberg
paramagnet is contained ir the 1;7 series expansion resuits and results
deduced from these series by Padé approximations.!®-36:35.45- 500 In the next
section, we shall express the solutions lor the specific heat and susceptibility
deduced from (63), (65), and (42} as a series cxpansion in powers of 1/T
which may be compared with the exact results.

Before proceeding to the 1;7 series, we examine the predicted Curie
and N¢el temperatures as well as vaiues of the nearest-neighbor correlation
functions at the critical temperature. We will show that the unphysical
results obtained by Liu in tac RPA for the § -} simple cubic paramagnet
i which the ecnergy predicted at the critical temperature was lower than the
ground-state energy disappzars when the quantum effects present in (63)
and (065) are taken into account.

Using the fact that

[l — -~ [(~h) (68)

for lattices that are decomposable into two interpenetrating sublattices
with the property that nearest-neighbor sites always lic on separate sublattices,

one finds from (66) with | /i i .= [ that the Curie and Néel temperature are
given by

R N SR (R ¢

Te= Tn o Tcfd S 1}) (69)

so that the Curie and Néel tempceratures arc in agreement to order 1:5(S - 1).
Equation (69) is in disagreement with the predictions of Rushbrooke and
Wood given in (57). One needs the following values of /(1)

|0-2527  (s¢)
I(1) =~ 10,1742 (beo) (70)
101122 (fee)

for the simple cubic, body-centcred cubic, and flace-centered cubic lattices
in order to compare our predictions for the Curie and Néel temperatures
with the predictions of Rushbrooke and Wood, "33 which are given by
(57) and

TEY = SJ(y, — DIISIS - 1)~ 1196k (71)
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Table I. Predictions for the Curie and Néel Temperaturess
Curie Néel Curic Néel Curic Néei
Lattice method S} S N S =1 S 572 S= 52
Simple-cubic
I, T Scrigs 3.3 0.629 0.717 0.683 0.719 0.709 0.718
RPA® 0.660 0.660 .660 0.660 0.660 0.660
Present theory 0.433 0.433 0.575 0.575 0.641 0.641
Body-centered cubic
1.7 Seriest®8:3% 0.061 0.730 0.735 0.764 0.744 0.750
RPA® 0.718 0.718 0.71% 0.718 0.718 0.718
Present theory 0.530 0.530 (.647 0.647 0.702 0.702
Face centered cubic
1.7 Serigs®6.38 0.692 None 0.752 None 0.780 None
1.7 Series® 0.679 None 0.747 None - None
RPA® 0.743 None 0.743 None 0.742 None
Present theory 0.571 Nonce 0.679 None 0.728 None

¢ Tabulated temperatures are multiples of
2vo | S(S + 1){3kg .

the Curic-Weiss temperature, few -

Table I gives a comparison of our predictions for the Curie and Néel
temperature with both RPA and {/7T series predictions. Our predictions are
uniformly lower than the 1/7 series estimates.

We now consider predictions for the nearest-neighbor spin-spin
correlation function predicted by our Green's function theory at the critical
temperature. We obtain

(Se* SSF = £3kpTclyd(1) D12 Sy - Ji3keTe)  (72)
N
upon the substitution of (69) irito (63) with the usc of (68). These values arc
considerably lower than the RPA values of Liu, which are given by

(So SHOEPA = —(Sp - S8 SIS il [yl (73)

Our values of {8, - S;>c are much closcr (o the 177 series values of Donib
and Sykes'* than the RPA values of Liu, as may be scen by an examination
of Table 11.

We find that the power laws ir. the critical region are the same as for the
RPA theory and the spherical model although the numerical values of the
coefficients change somewhat, as 1s evidenced by the change in the cntical
temperature and critical value of the nearest-neighbor correlation function
calculated above. Since the critical behavior of the spherical model is known
to be incorrect, we pursue thc matter no further.

822/7/2-2



112 Sam A. Scales and H. A. Gersch

Table Il. Critical Values of the Normalized Nearest-Neighbor
Correlation Function (Sg - S4)/S2

Curie Néel Curic Neel Curie Néel

Lattice method S =14 S =4 S S -1 S=m § 5w
Simple cubic

RPA (Liw)® 1.02 102 0.68 —0.68 0.34 —0.34

Present theory 0.53 —0.90 0.55 —0.04 0.34 - 0.34
Body-centered cubic

RPA (Liu)® 0.84 --0.84 0.56 —0.56 0.28 —0.28

Prescnt theory 0.54 -0.74 0.48 --0.54 0.28 -0
Face-centered cubic

RPA (Liu)*® 0.77 None 0.51 None 0.26 None

Prescnt theory 0.54 None 0.46 None 0.26 None

177 Series®® 0.45 None 0.34 None 0.19 None

6. 1/T SERIES RESULTS

it is useful to introduce the notation

] =248 (74)
K = JikgT (75)

and
X . SS--1) (76)

so that the Hamiltonian given by (7) now becomes

H= -(J25)) S, S,.q (17)
1.4
It is easier to assess the quantum effects as a function of S with the last
form of the Hamiltonian, for which the ferromagnetic ground state 1s
independent of S for fixed [ and for which the Curie temperature depends
only weakly on S for a fixed value of J. Equations (63) and (66) become

S o= SEydtinh Y — 1IK*1 - (0Kj65%)] (78)
and

K = 382X I()il - efyodh b~ DiX] (79)
when use is made of (74)~(76). We have introduced the variable ¢, which is

equal to unity. The reason we introduced ¢ is that if one sets + - 0, one
recovers the 1/7T series solution for the classical limit discussed in Section 4.
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We are therefore able to get 1/7 series expressions for both the spherical
model and the RPA model of Liu as well as the ;7 series cxpressions for
the quantum limit of our mode!.

Notice that (79) gives # as a function of spin and temperature. So iong
as ' k. < 1, we can expand (61) to obtain

I(h) = yoh™2 Y Wb (80)
nu

where

Wo - N (vilye) (81)

The lattice sums given in (81) may be interpreted with the aid of (20) as the
probability of returning to the starting point after n random steps between
nearest-neighbor spin sites. These valucs are casily obtained on a computer
and are given in Table [11 for several lattices.

Combining (79)-(81) and inverting the series, we obtain

fro== i AL(KISH" (82)

n =1
where the first four coefficients are given by

Av=Xpfd, Ay =0, Ay - XPRX + 0)/54,

(83
Ay = X3%,V,2X = 1)]162 )

where V,, 1s defined by
Voo v W (84)

We can now obtain an exphcit expression for f as a function of
temperature by substituting (82) and (30) into (78). The resulting expression

Table I1l. Probabilities W, of Returning to Starting Point After
n Steps Between Nearest-Neighbor Lattice Sites

Lattice W, W, W, W,
Linear i 3 0 3.8
Square H i 0 9:64
Simple cubic ! l6 0 5/72
Face-centered cubic ! 112 1:36 5'192
Body-centered cubic 1 1.8 0 27:512
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is readily reduced to a 1/T series in temperature. We write our prediction
for the normalized ncarest-neighber correlation function as

(8o SIS = - Y BN, S) SR (85)
w2

where one obtains our prediction for the classical Heisenberg model when
v == 0 as well as the series exnansion for the RPA theory of Liu'® and the
spherical model of Lax,®® and where one obtains our prediction for the
quantum Heisenberg model when ¢ :- 1. The coeflicients B (v, S) are
given in Appendix A, where they are compared with the exact results's®

B.E(v, S).
Upon substituting (62) and (72) into (42) and setting & = 0, we obtain

Xo = S*hiJy(l - 1) (86)

for the susceptibility. Finally, we obtain after substituting (82) into (86), an
expression for the susceptibility as a function of inverse temperature. We
denote our prediction for the series as

3kpTxo IS(S + 1) = ¥ DJF(r, $)S K™ (87)
n=0

where the coefficients DSF(p, S) are given in Appendix B and are compared
with the exact coefficients obtained by Brown and Luttinger.*!" Again, one
obtains predictions for the classical Heisenberg model when v = 0 and
predictions for the quantum Heisenberg model when v = 1. Equation (87)
also gives the exact 1/T series for tiie RPA theory when » == 0 as well as the
exact 1/T series for the spherical model of Lax"®* due to the relations
established in Section 4.

Notice in Appendices A and B that our 1/7T series coefficients for the
classical and quantum Heisenberg models are related in precisely the same
way as the exact 1/7T series for the classical and quantum Heisenberg models.
The coefficients with subscript n# are polynomials in the variable X of degree n
in the quantum case, whereas the coefficients in the classical case contain
only the term in the polynomial containing the highest power of the variable
X. We use this rigorous relation to establish that by setting V(k, T) in (46)
equal to unity, we do indeed obtain the classical limit of our theory which
was tentatively assumed in Section 4.

We have given arguments for the necessity for a second-order truncation
in the paramagnetic region of a Hcisenberg magnet in the absence of a
magnetic field. This truncation, which incorporates the exact values for the
zero, first, and second moments of the relaxation function as boundary
conditions, yields resuits which satisfy the rotational symmetry of the



Second-Order Green’s Function Theory of a Heisenberg Paramagnet 115

paramagnetic region and the principle of detailed balance. The classical
limit of our theory yields results for the equal time spin--spin correlations
in the field-free paramagnetic region which are identical to the results of both
the spherical model and the RPA theory of Liu. Quantum corrections to both
the Curie and Néel temperatures as well as critical values of the nearcst-
necighbor correlation function are found. Our expressions for the suscepti-
bility and internal energy are expanded in powers of the inverse temperature
and the results are compared with the cxact series.

APPENDIX A

The nearest-neighbor spin-spin corrclation coeflicients B (i, ) defined
by (85) and discussed in Section 6 are compared below with the exact
coefficients, denoted by B, E(v, S), which were deduced from the coefficients
of Rushbrooke and Wood.@%

Linear:
B,E = X¥3, ByE - 0X3 — pX¥12,
B = X¥—3X2 - 8uX | 30)/135
BFF = X3, BT = OX® — rX¥I8,
BYY = X*(—5X* — 100X - 1.250)/135
Square:

B,E = X3, B, = 0X% - cX¥12,
BE = XXTX? — 180X — 30)/135

SF = X¥3,  By" = 0X® — vX¥I8,
BSF = X¥5X%— 20cX - 1.25r)/135
Simple cubic:
B,E = X?3, BE = 0X° — v X?/12,

B,E = X*(17X2 — 28cY —- 3v)/135

BSF — X3, BSY = 0X3 — vX¥/18,
BSF = X*(15X*% — 300X | 1.25¢)/135
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Body-centered cubic:
BE = X23,  BJF = 0X% - vX¥i2,
BE = X¥57X? — 38cX - 3v)/135
BSF = x¥3, B9 — ox° — eX Y18,
BSF = X*55X% — 40cX - 1.250)/135
Face-centered cubic:
BE = X¥3, B = (4X%9) — (¢X¥12),
B = X*107X% — 780X -} 3¢)/135
BSF = X3, BYT = (4XY9) — (tXT18),
BJF = X¥105X% — 70cX - 1.256)/135

APPENDIX B

n

in Section 6 are compared with the exact coefficients, denoted by D, E(¢, S),

The susceptibility coefficients DSF(r, $) delined by (87) and discussed

which we deduced from the coeflicients of Brown and Luttinger.sV

Linear:
DfE =1,  DFE = 2X/3, DS - (2X%9) — (tX/6)
DEF =1,  DF¥ = 2x/3, DY = (2X¥9) — (v X/9)
Square:
DE =1, D =4X)3, DS - (4XH3) - (tX/3)
DJF =1, DFF =4x73. DJY - (4X¥3) - (20X/9)
Simple cubic:
DE =1, D =2X, D, - (10X¥3) — (rX/2)
DJF =1, DPF = 2x, DF - (10X%3) - (¢ X/3)

Body-centered cubic:

DOE = ]9

Dyt =1,

D.E = 8X/3,
DS = 8x/3,

D (56X%9)

(2()(/3)
DIF - (56X%9) — (40 X/9)
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Fuce-centered cubic

D =1,  DF=4Xx, D = (44X%3) - v
DFF =1,  DfF = 4X, DY = (44X%3) — (2eX)3)
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